Для того чтобы воспользоваться данной функцией,
необходимо войти или зарегистрироваться.

Закрыть

Войти или зарегистрироваться

Логин:
Пароль:
Забыли свой пароль?
Войти как пользователь:
Войти как пользователь
Вы можете войти на сайт, если вы зарегистрированы на одном из этих сервисов:

Глава 1

 

ДЕПАРТАМЕНТ ФИЗИЧЕСКОЙ КУЛЬТУРЫ И СПОРТА ГОРОДА МОСКВЫ

   МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНОЙ БИОТЕХНОЛОГИИ

   КАФЕДРА «ТЕХНОЛОГИЯ ПРОДУКТОВ ДЕТСКОГО, ФУНКЦИОНАЛЬНОГО И СПОРТИВНОГО ПИТАНИЯ»

  ИННОВАЦИОННАЯ КОМПАНИЯ ЗАО «АКАДЕМИЯ-Т»

  

Любая физическая нагрузка сопровождается изменением скорости метаболических процессов в организме, появлением биохимических сдвигов в работающих мышцах, во внутренних органах и в крови.

В основе всех биохимических изменений, возникающих при физической нагрузке, лежит изменение направленности метаболизма. При выполнении физической нагрузки в организме повышается скорость катаболических процессов, при одновременном снижении скорости анаболизма.

Необходимая перестройка метаболизма во время мышечной деятельности происходит под воздействием нервно-гормональной регуляции, что приводит к усиленной секреции стрессорных гормонов: катехоламинов (адреналина и норадреналина), адренокортикотропного гормона, глюкокортикоидов (кортизол, кортизон и кортикостерон), соматотропного гормона, глюкагона, а также к снижению секреции инсулина.

Попадая в кровь, гормоны значительно ускоряют катаболические процессы, приводящие к адаптивным сдвигам белкового, углеводного обменов и одновременно к повышению активности гормоночувствительной липазы жировой ткани.

Под действием катехоламинов и глюкокортикоидов наблюдается усиление процессов гликогенолиза и глюконеогенеза. Кроме того, повышается мобилизация жира и окисление свободных жирных кислот, а также снижается клеточное потребление глюкозы, тем самым, обеспечивая организм важными источниками энергии при выполнении длительной физической работы.

В обширном комплексе изменений метаболических реакций одно из центральных мест принадлежит процессам, возникающим в работающих мышцах, а именно, метаболизму белков и аминокислот. Белки играют важную роль в обеспечении сократительной функции скелетных мышц и сердца, в формировании долговременной адаптации к физическим нагрузкам, создании определенного композиционного состава тела.

При рассмотрении метаболизма в условиях мышечной деятельности роль белков и аминокислот часто игнорируют по причине незначительного вклада белков в энергетику мышечной деятельности, однако даже такой незначительный вклад в энергообеспечение имеет немаловажное значение в условиях высоких энергозатрат, происходящих в результате физической нагрузки в течение продолжительного периода.

Пролонгированные физические нагрузки, сопровождающиеся усиленным энергообеспечением и увеличением содержания в крови глюкокортикоидов, оказывают значительное стрессовое воздействие на общий пул мышечных белков и их обращаемость.

Во многих работах имеется информация о том, что под действием физических нагрузок, требующих проявления выносливости, распад белков происходит преимущественно в печени и мышцах, что сопровождается снижением скорости белкового синтеза в этих тканях. При этом отмечается повышение уровня деградации несократительных белков скелетных мышц и белков печени, и наоборот, угнетение распада сократительных мышечных белков.

Стимулируемый мышечной деятельностью распад белков в печени и мышцах может обусловить выход значительного количества аминокислот. Их количество в тканях во время выполнения длительной физической работы может увеличиваться в 20 – 25 раз. Большинство аминокислот окисляются и восполняют АТФ либо вовлекаются в процесс новообразования глюкозы и способствуют поддержанию её уровня в крови, а также уровня гликогена в печени и скелетных мышцах. Было установлено, что не все аминокислоты имеют одинаковый метаболический потенциал. В частности оказалось, что в мышцах преобладает окисление аминокислот с разветвленной цепью (АКРЦ).

Таким образом, в условиях высокого катаболизма эндогенного белка при недостаточности поступления в организм энергопластического материала, превалирующее использование аминокислот, принимающих участие в глюконеогенезе, приводит к аминокислотному дисбалансу в крови и других тканях. В итоге одним из суммарных результатов нервно-гормональных сдвигов метаболизма является резкое повышение энергетического обмена, другим – отрицательный азотистый баланс.

Так как при каждом виде, характере и режиме физической нагрузки истощаются лишь определенные структуры и субстраты энергетических процессов и наиболее интенсивно функционируют лишь определенные стороны энергетического метаболизма, то катаболические процессы в каждом случае сопровождаются накоплением метаболитов (лактат, аммиак, кетокислоты и др.) в определенных количественных соотношениях.

При выполнении интенсивных физических нагрузок в мышцах наблюдается быстрое истощение запасов глюкогена и одновременное образование и накопление молочной кислоты (лактата). Высокие концентрации лактата в крови являются отражением развития ацидоза (закисления) как внутри самих мышечных клеток (внутриклеточный ацидоз), так и в межклеточных пространствах, их окружающих (внеклеточный ацидоз). Развитие ацидоза приводит к серьезным метаболическим изменениям, сопровождающимися одновременным нарушением координации движений. Нарушается функционирование многих ферментных систем, в том числе аэробного энергообеспечения. Длительное сохранение внутри- и внеклеточного ацидоза сопровождается повреждением клеточных оболочек скелетных мышц, что приводит к их микронадрывам, нарушаются процессы сокращения и расслабления скелетной мускулатуры, что в итоге приводит к мышечной усталости и неспособности спортсмена поддерживать высокую работоспособность.

Аммиак является основным метаболитом белков и аминокислот. Уровень аммиака особенно возрастает в случае, когда не устанавливается устойчивое состояние метаболизма, а также при длительной мышечной нагрузке. Свободный аммиак токсичен для организма человека. Он проникает в головной мозг, где вызывает нейротоксический эффект: снижается синтез основного источника энергии клеток – АТФ (аденозинтрифосфат), нарушается нормальный баланс аминокислот и нейромедиаторов. В дефиците находятся аминокислоты, которые принимают активное участие в обезвреживании аммиака. Аминокислотный дисбаланс характеризуется увеличением содержания в крови ароматических аминокислот. Это обусловливает значительное поступление ароматических аминокислот в головной мозг и синтез так называемых "ложных" нейротрансмиттеров - существенно менее активных веществ, чем физиологичные норадреналин и допамин. Возрастает также концентрация тормозного нейротрансмиттера гамма-аминомасляной кислоты (ГАМК). Подобные изменения оказывают негативное влияние на психоэмоциональное состояние спортсмена.

Многочисленные биохимические и физиологические исследования свидетельствуют, что интенсивные физические нагрузки способствуют значительному сдвигу адаптационно-приспособительных механизмов, проявляющихся в повышении уровня инфекционной заболеваемости на фоне ослабления как гуморального, так и клеточного звеньев иммунитета. В процессе тренировок и особенно после соревнований у спортсменов отмечается снижение иммуноглобулинов класса IgG, IgA, IgM, лизоцима и общего белка, приводящих к выраженному угнетению иммунной системы и развитию инфекционных заболеваний. Иммунокомпетентная система для нормального функционирования организма требует достаточного поступления белка с пищей. Негативная динамика изменений иммунологического статуса у спортсменов в целом отрицательно влияет на спортивные результаты из-за снижения работоспособности и выносливости в связи с необходимостью организма спортсмена расходовать энергию на сопротивление заболеваниям.

Исследованиями последних лет было доказано наличие взаимообусловленных зависимостей между состоянием микрофлоры кишечника и иммунной системы организма. Здоровая микрофлора выступает индикатором физиологического состояния спортсмена и является первичным неспецифическим барьером, который инициирует все последующие неспецифические и специфические механизмы защиты организма. Интенсивные физические нагрузки, повышенный уровень аммиака оказывают губительное воздействие на полезную микрофлору кишечника. Кроме того, сильное напряжение брюшных мышц довольно часто приводит к стрессовому нарушению его моторно-эвакуаторной функции. В конечном итоге дисфункция желудочно-кишечного тракта приводит к ограничению ассимиляции эссенциальных нутриентов, необходимых для поддержания высокой физической работоспособности в ходе физической нагрузки.

Интенсивные физические нагрузки приводят к ускоренному распаду и выведению микронутриентов (витаминов, макро- и микроэлементов) из организма. Повышенная экскреция микронутриентов из организма спортсмена под воздействием мышечной нагрузки связана не только с высоким уровнем окислительно-восстановительных реакций, но и с угнетением процессов всасывания в кишечнике. Очень часто совокупность этих двух факторов (усиление обмена и ингибирование всасывания) на фоне недостаточного поступления с рационом вызывает превалирование выделения микронутриентов из организма над поступлением их с пищей, что ведет к их дефициту.

Суммируя все сказанное выше, можно заключить, что интенсивные физические нагрузки вызывают у спортсменов нарушение гормональных взаимоотношений и сбалансированной активности различных гормонов, последовательного, адекватного, физиологически обусловленного чередования анаболической и катаболической фаз обмена веществ со стойким преобладанием катаболических процессов. Глубокие метаболические изменения внутренней среды (сдвиги рН, накопление мочевины, лактата и др.) приводят к эндогенной интоксикации организма. Указанные изменения провоцируют нарушения регуляции иммунного гомеостаза. Абсолютная или относительная пищевая (включая витамины и микроэлементы) недостаточность и связанное с этим нарушение энергетического, пластического, субстратного обеспечения также резко снижают резервные возможности организма спортсмена.

Результатом этих явлений становится неспособность организма быстро перейти в режим восстановления после физических нагрузок, что в свою очередь ведет к следующим трудностям практического характера:

  • выраженные признаки переутомления, острое и хроническое недовосстановление;
  • потери мышечной массы, несмотря на хорошую программу тренировок;
  • низкая работоспособность;
  • вторичное снижение показателя обмена веществ;
  • появление синдрома перетренированности и перенапряжения.

Следствием этого является снижение сопротивляемости инфекциям, возникновению аллергических реакций, аутоиммунных и других заболеваний. В этой связи на первый план выходят проблемы взаимодействия нагрузки и восстановления организма как факторов, которые обусловливают адаптационные процессы в организме спортсмена, где одну из важнейших ролей выполняет сбалансированное питание с необходимостью учета расхода пищевых веществ, энергии, макро- и микроэлементов пищи.